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Abstract: We develop and test a multistate Gaussian model for the distribution of electrostatic solvation energies of
a solute in liquid water. The multistate Gaussian model depends on the discovery of simple indicators of structural
substates that individually display Gaussian fluctuations of electrostatic interactions. The probability distribution of
electrostatic interactions is then modeled as a superposition of Gaussian distributions of electrostatic interactions of
the substates. We find that the number of hydrogen bonds to the solute is a suitable substate indicator that eliminates
the chief failures of single Gaussian models for the distribution of electrostatic interactions and of quadratic models
of the electrostatic contribution to the excess chemical potential. These results should improve calculations of ionic
chemical processes in water,i.e., acid-base chemistry, in particular those involving organic acids such as proteins
and nucleic acids. The multistate Gaussian approach provides a specific and effective alternative to commonly
discussed electrostriction and dielectric saturation modifications of dielectric continuum models. Moreover, the
representation of complex energy distributions by a sum of simpler distributions based on structural substates is
general and should be applicable in a variety of thermodynamic problems of solution chemistry.

Introduction

Dielectric continuum models1-5 dominate our understanding
of hydration of ionic and polar solutes in water. These models
are physically simple and have been extensively studied.6 They
may be derived from basic starting points by taking a macro-
scopic limit in which most solvent molecular details vanish.
Alternatively, dielectric models might be viewed as simplified
implementations of second-order thermodynamic perturbation
theory, or a Gaussian distribution model, for solute-solvent
electrostatic interactions.7 These molecular views of dielectric
continuum models avoid and thus resolve the most serious
limitation of dielectric models, namely, the definition of solute
cavities on the basis of radii parameters. Those parameters
should depend on temperature, pressure, composition of the
solvent, and configuration of the solute. However, comparisons
of computed solvation free energies with experiment over a
limited range of conditions suggest that dielectric models can
be helpfully accurate and that the values determined empirically
for radii parameters are chemically reasonable. Dielectric
models can break down more seriously when changes of
conditions lead to changes in the correlations between near
solvent molecules.
When tested on a molecular scale without the additional

adjustment of radii, it becomes clear that dielectric models
capture an essential basic ingredient of the solvation theory but
are often not molecularly accurate. For instance, the free
energies of ions in aqueous solution exhibit an approximately
quadratic dependence on the ionic charge, in agreement with

the Born continuum model of ionic solvation.8 But higher order
(up to eighth order) perturbation theory is required to capture
fully the electrostatic hydration free energy of a water molecule
in liquid water.9 A physical conclusion from such results is
that electrostatic hydrogen bonding interactions are difficult
cases for dielectric continuum theories because the charges
involved are relatively accessible. Even for classic atomic ions
in water significant violations of linear response expectations
can be observed for modest ionic charges: if the ion chargeq
is manipulated through the regionq ≈ -0.2 e, the structure of
the first solvation shell makes a transition that is reflected in a
nonlinear change of the solvation potential, akink, with change
of ionic charge.8

A physical picture that is consistent with the known successes
and limitations of dielectric models is the following: The
structure of the first hydration shell is most important. The
structure of that first hydration shell can be viewed from the
perspective of Stillinger-Weber “inherent structures” or sub-
states.10 These are potential energy basins of attraction for
steepest-descent quenching of first hydration shell molecules.
If those first hydration shell molecules stayed always in one
basin, then a Gaussian model for thermal fluctuations would
be reasonable. Empirical radii parameters reflect the charac-
teristics of the most important basin. However, changing
conditions may result in reweighting of slightly accessible basins
or the opening of new basins. The Gaussian or dielectric models
may fail to describe these possibilities well. We note that this
picture is physically more definite than the commonly nonspe-
cific discussions of electrostriction and dielectric saturation.
This paper shows how to develop the physical idea expressed

above. Attention is directed to the thermal probability distribu-
tion of electrostatic potential energies of the solute. Rather than
approximate this distribution as a Gaussian, or largely Gaussian
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as would be the case upon inclusion of higher order perturbative
corrections, we discriminate hydration structure on the basis of
simple parameters diagnostic of hydration substates. We assume
that the probability distribution of electrostatic potential energies
is Gaussian for each substate. Therefore the full distribution is
a superposition of Gaussians for the various substates. We show
that identification of suitable substate diagnostic parameters can
be simple,e.g.,they can be the number of hydrogen bonds made
to the solute, and no explicit calculation of inherent structures
is required. We show further that this approach can be highly
accurate, eliminating some of the detailed numerical inaccuracies
of the Gaussian fluctuation models.

Multistate Gaussian Model

The technical development begins from the fundamental relation
between the distributionp(u; λ ) 0) of electrostatic energiesu in the
reference charge stateλ ) 0 and the part of the chemical potential due
to electrostatic interactions∆µ(λ), which is the thermodynamic
parameter sought,

Here,â ) 1/kBT is the inverse temperature and〈...〉λ)0 denotes a thermal
average in the reference stateλ ) 0. Direct use of eq 1 has recognized
limitations. Thoughp(u) is often substantially Gaussiansand that
supports perturbation theory approximationssthe formula eq 1 is
sensitive to the tails ofp(u). That limits the applicability of eq 1 for
calculations of even small changes in the charge stateλ. In addition,
the simple estimator ln〈e-âλu〉λ)0 ≈ ln[M-1∑i)1

M e-âλui] from M energies
ui observed in a simulation is highly biased for wide distributionsp(u)
and requires extremely large numbersM.11

Methods that have been advanced to overcome those difficulties
include perturbation expansions.7-9,12-18 But direct extension of
perturbation theory beyond fourth order has been impractical. In
contrast to perturbation expansions, interpolative approximations
polynomial inλ have been more successful. For the charging of water
and ions in water, expansions to order six and higher were necessary
to account for the simulation data.8,9,16 Thus, perturbation theory would
be unsatisfactory in such cases and additional calculations would be
required. For atomic ions, a kink was observed for d∆µ(λ)/dλ as a
function of chargeλ. A different methodological approach was
developed many years ago by Wheeler and Gordon19 for utilizing power
moments ofp(u) to model averages such as eq 1. That approach could
be expected here to be of value for modeling the chemical potential
∆µ(λ) but has the disadvantage that direct examination ofp(u) would
not be informative unlessmanymoments were available. In the present
examples, it is typically impractical to calculate more than about four
moments.
On a broader level, however, the idea of modeling the distribution

p(u), perhaps including physical intuition in addition to the information
available, is sure to be useful. This point of view has recently been
helpful in understanding and computing hydrophobic effects20-22 and
in extending thermodynamic perturbation theory calculations.23-26

Here, we will attempt to represent the observed complicated
properties ofp(u) considering a combination of simpler states. We
attempt to find states{n} with simple densitiespn(u) such that the

weighted combination of states will reproduce the behavior of the
overall system,

with weightswn g 0, ∑nwn ) 1 and normalized densitiespn(u) g 0,
∫du pn(u) ) 1. For electrostatic systems, we will seekpn(u)’s of
Gaussian form, representing the overall system as a linear combination
of Gaussian subsystems, each showing linear response to electrostatic
interactions. A natural, nonunique choice of the states{n} is sorting
with respect to the number and type of neighboring solvent
molecules.20-22,27 This is based on the assumption that for each number
of neighboring molecules the dielectric response of the solvent will be
approximately linear, whereas the characteristics of that linear response
may vary considerably between solute states with different numbers
of neighbors.
Representingp(u) by a sum of Gaussian densities can give nontrivial

results for the chemical potential, as can be seen by substituting eq 2
into eq 1,

wheremn and σn
2 are the mean and variance of the Gaussianpn,

respectively.

Results and Discussion

(a) Hydration of Water. We will now explore the validity
of a multistate Gaussian model, considering two test cases: (a)
the uncharging of a water molecule in water and (b) the charging
of an ion in water. Accurate reference data are available for
both systems. In the case of uncharging water, we performed
a Monte Carlo (MC) simulation of 512 SPC water molecules28

using Ewald-summation electrostatics29 at a temperature of 298
K and a density ofF ) 0.99707 g/cm3 (see ref 9 for further
details). The electrostatic interaction energiesu of each water
molecule (solute) with all other water molecules (solvent) were
calculated for 8000 configurations taken from 400 000 MC
passes. The Ewald interaction potential was approximated by
a tenth-order kubic-harmonic expansion.9,30-32 The probability
density of those energiesu is shown in Figure 1. Also shown
is a Gaussian probability density with identical mean and
variance, which is somewhat wider in the tails, indicative of a
negative kurtosis ofp(u).
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The “neighborhood” of a water molecule can be defined by
using a hydrogen bonding criterion. We consider two molecules
to be neighboring if any of their oxygen-hydrogen distances
is below 0.24 nm, which is the first minimum in the OH pair-
correlation function. For that criterion, we find an average
number of neighbors of 3.64 withwn > 10-3 for 1 e n e 6
andn ) 4 being the most probable number of neighbors. We
calculated the probability density of energiespn(u) by binning
the energiesu of a particular molecule in histograms according
to the numbern of its neighbors. The meanmn and variance
σn2 of those probability densities give the Gaussian approxima-
tionspn(u) ) (2πσn2)-1 exp[-(u - mn)2/2σn2]. The weighted
sum of those Gaussian densities,∑n)1

6 wnpn(u), is an excellent
approximation to the probability densityp(u), as shown in Figure
1. In particular, the tails of the distribution are better represented
than in the simple approximation by one Gaussian. This is
important because in the average eq 1, the tails dominate due
to the Boltzmann factor. As illustrated in Figure 1 (top panel),
Gaussians are indeed excellent approximations to the individual
energy distributionspn(u) for different numbers of neighbors
n.
This is even more evident in the calculated change of the

chemical potential upon change of the charge state of a solute
water molecule. The statesλ ) 0 and 1 correspond to a fully
charged and uncharged solute water molecule, where the partial
charges of that molecule are varied linearly withλ. In Figure
2, we compare the chemical-potential change calculated from

a single Gaussian and from the sum over Gaussian probability
densities for neighborsn ) 1 to 6. The single-Gaussian
approximation gives poor behavior, as observed previously,9,33

and deviates from the reference curve forλ > 0.25 already.
However, the chemical potential calculated from a weighted
sum of Gaussian probability distributions deviates only for large
perturbationsλ > 0.8. The chemical-potential difference
between a charged and an uncharged water molecule is accurate
to within 5%. This is a surprising result, because∆µ(λ) is
nonquadratic, requiring an eighth-order polynomial to fit the
simulation data for chemical-potential derivatives.8,9,16 It shows
that even for large perturbations involving changes of the
chemical potential of about 14kBT the energy distributionp(u)
contains sufficient information, and that a multistate Gaussian
theory is an accurate way of extracting that information to
calculate chemical potential differences.
(b) Hydration of Ions. The second system used to inves-

tigate the applicability of a multistate Gaussian theory is that
of an ion in water. We focus on an ion with methane Lennard-
Jones parameters,34 as studied previously.8 We carried out a
MC simulation of an uncharged methane particle Me in 128
SPC water molecules at 298 K (see ref 8 for details), analyzing
100 000 configurations taken from 106 MC passes. Figure 3
shows the probability density of the electrostatic energyu of
charging that particle from zero charge to the elementary charge
e. p(u) is approximately Gaussian at the resolution available
for this system.
The definition of “neighborhood” of a solvent molecule is

somewhat more difficult for an uncharged solute than for water
because the first peaks in the solute-water pair-correlation
functions (for O and H) are broad. We decided to consider a
water molecule as neighboring if either of the two Me-H
distances was below 0.32 nm (where the Me-H pair correlation
function reaches a value of one for the first time). That stringent
criterion results in an average number of neighboring solvent
molecules of 2.24 with weightswn > 10-3 for 0 e n e 7. The
weighted sum of Gaussian probability distributions according
to that criterion gives ap(u) distribution that is positively
skewed, but otherwise close to the single-Gaussian approxima-
tion. Alternative criteria could also involve the oxygen position
or the directionality of the hydrogen bond.
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Figure 1. Probability density of the electrostatic energyu of a water
molecule in water on a logarithmic scale (bottom panel). The square
symbols show histogram data. The dashed line is the Gaussian
probability density with estimated mean and variance. The solid line
is the result of adding Gaussian probability densities forn ) 1 to 6
neighbor atoms, as defined by an OH distance of 0.24 nm. Note that
for this definition of u as the electrostatic interaction energy of the
solute water molecule with the solvent, we have to change the sign of
λ in eqs 1 and 3. Therefore, the upper tail ofp(u) is most important.
This is illustrated by the inset showingp(u) exp(âu) that is significantly
larger than zero in a region from about-30 to 60 kJ mol-1, where
essentially no histogram data are available. (The multistate Gaussian
model is used forp(u).) The top panel shows the substate contributions
wn pn(u) for n ) 1 to 6 neighboring molecules as symbols together
with the corresponding Gaussian approximations (lines). Gaussians with
different mean valuesmn and variancesσn

2 are excellent approximations
to the substate distributions of electrostatic energiesu.

Figure 2. Chemical potential of a water molecule as a function of its
charge state.λ ) 0 and 1 correspond to fully charged and uncharged
states, where the partial charges are varied linearly withλ. The solid
curve shows the result of expanding aboutλ ) 0 by adding Gaussian
probability densities forn ) 1 to 6 neighbor atoms. The dashed curve
is the result of using a single Gaussian probability density. As a
reference, the polynomial approximation of order eight to the chemical
potential∆µ(λ) from ref 9 is shown with a dot-dashed line.
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The chemical potential of charging the methane-sized particle
from 0 to (e is shown in Figure 4 along with the first and
second derivative with respect to the dimensionless chargeλ )
q/e. The multistate Gaussian theory results in a qualitative
improvement over a single-Gaussian approximation, with both
the anion and cation chemical potentials in better agreement
with the reference data from ref 8. However, quantitative
agreement with the reference data is observed only for the cation
data for the chemical potential and its derivatives. For the anion,
the agreement is only qualitative. The first derivative of∆µ,
i.e., the average potential at the ion position, is curved upwards,
but the kink atq ≈ -0.2 e is weaker than in the simulation
data.
These discrepancies might be understood in part from the

increased statistical errors of the ion data compared to the water
case where every water molecule could be treated individually
as a solute resulting in great sampling thoroughness. But the
primary causes are the structural differences in the first hydration
layer between the uncharged particle and the anion. The first
peak of the anion-hydrogen pair-correlation function is in a
region where the corresponding correlation for the uncharged
particle is zero.8 As a consequence, none of the configurations
representative of anionic hydration are observed in the simula-
tion of the uncharged Me particle. It may be possible to find
a better reference system than the uncharged solute or a better
indicator of significant structural substates. A negative charge
stateq≈ -0.2 e, for instance, should be a better reference state
because the anionic hydration structure would be better repre-

sented. Consideration of the fully charged states of the ions
should further increase the accuracy, in part because the problem
of extrapolating from an uncharged reference state would then
become a problem of interpolating between two states, which
is generally simpler.8 Moreover, the separation into well-defined
substates would be simplified because of the more ordered
structure in the first hydration layer of a charged ion compared
to an uncharged, spherical Lennard-Jones particle. Substate
criteria could again be the number of hydrogen bonds or the
number of solvent molecules in the first hydration layer.
Nevertheless, the multistate Gaussian model can give correct
indication of the changes when going from positive to negative
ionic charges. This multistate Gaussian model suggests the two
different quadratic regimes of the chemical potential for anions
and cations.

Conclusions

We found quantitative agreement between the multistate
Gaussian model and reference data for uncharging of a water
molecule in water and for charging a cation and qualitative
agreement for charging an anion in water. The multistate
Gaussian model produces the correct nonlinear behavior directly
from the systematic decomposition of the electrostatic energy
distributions into a sum of Gaussians based on structural

Figure 3. Probability density of the electrostatic energyu of a methane-
size ion in water on a logarithmic scale, determined from a simulation
of an uncharged ion in water (bottom panel). The dashed line is the
Gaussian probability density with estimated mean and variance. The
solid line is the result of adding Gaussian probability densities forn)
0 to 7 neighbor atoms, as defined by an ion-hydrogen distance of
0.32 nm. The inset showsp(u) exp((âu), scaled appropriately for
negative and positive ions to fit on the same graph. (The multistate
Gaussian model is used forp(u).) The two curves are significantly larger
than zero below about-200 and above 350 kJ mol-1, respectively, in
regions far from whereu histogram data have been collected. The top
panel shows the substate contributionswn pn(u) for n ) 0 to 7
neighboring water molecules as symbols together with the correspond-
ing Gaussian approximations (lines). As for water (Figure 1), Gaussians
are excellent approximations to the substate distributions of electrostatic
energiesu.

Figure 4. Chemical potential and its derivatives with respect to charge
of a methane-size ion in water as a function of its charge stateq. The
chemical potential (top) and its first (middle) and second derivative
(bottom) with respect to the chargeq/e are shown. The results of a
single Gaussian and of adding Gaussian probability densities forn )
0 to 7 neighbor molecules are shown with dashed and solid lines,
respectively. For reference, the polynomial approximationp8 of order
eight (dot-dashed line) as well as simulation data for the first and second
derivative from simulations of charged ions andN ) 128 (plus) and
256 (square) water molecules are shown, taken from ref 8.
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substates. The observed agreement is not the consequence of
a numerical fit. These results are encouraging in several ways.
(1) They indicate that we can indeed find simple criteria
identifying a small set of states, each exhibiting approximately
linear response, with the whole producing a nonlinear result
for the system thermodynamics. This has implications regarding
the development of improved dielectric continuum models that
contain molecular information about the solvent.6,33 A weighted
mixture of a few continuum-dielectric systems can give the
complicated behavior stemming from nonlinear dielectric
response. This is a specific and effective alternative to the ideas
of electrostriction and dielectric saturation for these problems.
(2) On the practical side, the multistate Gaussian model provides
a way of maximizing the use of data of a single simulation for
the calculation of free energies. As shown in the water case,
large energetic perturbations can be manageable with this
approach. (3) A decomposition of a complicated probability
density into a weighted sum of simpler ones is a general concept.
A possible area of application includes glasses and amorphous
materials, where one expects considerable differences of the
energy distributions of a particle depending upon its local
environment, but where the probability densities should be
simpler when sorted according to coordination numbers. For
instance, Sciortino, Geiger, and Stanley35 investigated the
correlation of the diffusivity of water molecules with binding
energies and coordination numbers in quenched configurations
of water.
A particularly interesting area of application is the analysis

of simulation data for proteins and nucleic acids. Dielectric
continuum models with empirical atomic radii and dielectric
constants are used with some success for the calculation of pKa

values of ionizable groups.5 Recently, advances were made in
calculating pKa values of ionizable groups from computer
simulations.36-40 However, that analysis is still awkward and
tedious, often involving several independent free-energy simula-

tions for each ionizable group. That effort can be greatly
reduced if accurate free energies of protonation can be calculated
from a small number of equilibrium simulations. Equilibrium
simulations have the great advantage that one can extract
additional structural, dynamic, and energetic information. The
accuracy of such an analysis should increase considerably if
the multistate Gaussian model is used.

The problem of multiple protonation sites could be treated
more reliably without simulation of each of the possible charge
states if an accurate extrapolation method such as the multistatate
Gaussian theory is used. That analysis would then eliminate a
number of energetically unfavorable protonation states such that
only the relevant states need to be considered for a more detailed
analysis. High accuracy will in general require interpolation
between at least two reference states (e.g., charged and
uncharged), because extrapolation from one state alone is
difficult when the free energy changes by several hundred
kilojoules per mole.8

A multistate Gaussian analyis of amino acid protonation states
might require sorting of configurations according to the changes
in the local environment of the ionizable group. For instance,
the properties should be different if another amino acid side
chain of a protein is interacting directly with the group under
consideration during parts of the simulation. This suggests a
classification of states based on the number and type of
interacting amino acids, where each state can exhibit ap-
proximately Gaussian statistics of electrostatic energy fluctuations.
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